



## When Do LLMs Help With Node Classification? A Comprehensive Analysis

<sup>1</sup>The Chinese University of Hong Kong <sup>2</sup>Microsoft Research Asia <sup>3</sup>University of Illinois Urbana-Champaign https://wxxshirley.github.io/  $\boxtimes \underline{xxwu@se.cuhk.edu.hk}$ 



classic methods, and 3 learning configurations  $\gamma$ 

Xixi Wu<sup>1</sup> Yifei Shen<sup>2</sup> Fangzhou Ge<sup>1</sup> Caihua Shan<sup>2</sup> Yizhu Jiao<sup>3</sup> Xiangguo Sun<sup>1</sup> Hong Cheng<sup>1</sup>

## **Controlled Experiments: Findings & Tips**

| Semi-supervised & Supervised |                              |                       |                         |                                      |                      |                      |                                    |                                       |                    |                        |                             |                    |       |
|------------------------------|------------------------------|-----------------------|-------------------------|--------------------------------------|----------------------|----------------------|------------------------------------|---------------------------------------|--------------------|------------------------|-----------------------------|--------------------|-------|
| Semi-supervised              |                              | Cora                  | Cora Cites              |                                      | ned Wil              | kiCS I               | nstagram                           | Red                                   | dit                | Books                  | Photo                       | Computer           | Avg.  |
| Classic                      | GCNShallowEmb                | 82.30 <sub>±0.1</sub> | $_{9}$ 70.55 $_{\pm 0}$ | <sub>0.32</sub> 78.94                | -0.27 <b>79.8</b>    | $6_{\pm 0.19}$ 6     | $53.50_{\pm 0.11}$                 | $61.44_{\pm 0.38}$                    |                    | $58.79_{\pm 0.46}$     | $69.25_{\pm 0.81}$          | $71.44_{\pm 1.19}$ | 71.79 |
|                              | SAGEShallowEmb               | $82.27_{\pm 0.3}$     | $69.56_{\pm 0}$         | 0.43 <b>77.88</b>                    | 10.44 <b>79.6</b>    | $7_{\pm 0.25}$ 6     | $53.57_{\pm 0.10}$                 | 56.65                                 | $\pm 0.33$ 7       | $2.01_{\pm 0.33}$      | $78.50_{\pm 0.15}$          | $81.43_{\pm 0.27}$ | 73.50 |
|                              | GATShallowEmb                | $81.30_{\pm 0.6}$     | $69.94_{\pm 0}$         | 0.74 <b>78.49</b>                    | E0.70 79.9           | $9_{\pm 0.65}$ 6     | $53.56_{\pm 0.04}$                 | $60.60_{\pm 1.17}$                    |                    | $4.35_{\pm 0.35}$      | $80.40_{\pm 0.45}$          | $83.39_{\pm 0.22}$ | 74.67 |
|                              | SenBERT-66M                  | $66.66_{\pm 1.4}$     | $60.52_{\pm 1}$         | . <sub>62</sub> 36.04                | <sub>2.92</sub> 77.7 | $7_{\pm 0.75}$ 5     | $59.00_{\pm 1.17}$                 | $56.05_{\pm 0.41}$                    |                    | $33.68_{\pm 0.19}$     | $73.89_{\pm 0.31}$          | $70.76_{\pm 0.15}$ | 64.93 |
|                              | RoBERTa-355M                 | $I = 72.24_{\pm 1.1}$ | $_4  66.68_{\pm 2}$     | 2.03 42.32                           | 1.56 <b>76.8</b>     | $1_{\pm 1.04}$ 6     | $53.52_{\pm 0.44}$                 | 59.27 <sub>±0.34</sub>                |                    | $84.62_{\pm 0.16}$     | $74.79_{\pm 1.13}$          | $72.31_{\pm 0.37}$ | 68.06 |
|                              | GLEM                         | $81.30_{\pm 0.8}$     | $68.80_{\pm 2}$         | 2.46 <b>81.70</b>                    | ±1.07 76.43          | $3_{\pm 0.55}$ 6     | $50.25_{\pm 3.66}$                 | $55.13_{\pm 1.41}$                    |                    | $33.28_{\pm 0.39}$     | $76.93_{\pm0.49}$           | $80.46_{\pm 1.45}$ | 73.81 |
| Encoder                      | <b>GCN</b> <sub>LLMEmb</sub> | 83.33 <sub>±0.7</sub> | $75 71.39_{\pm 0}$      | <sub>0.90</sub> 78.71                | e0.45 80.9           | $4_{\pm 0.16}$       | 67.49 <sub>±0.43</sub>             | 68.65                                 | ±0.75 8            | 33.03 <sub>±0.34</sub> | $84.84_{\pm 0.47}$          | $88.22_{\pm 0.16}$ | 78.51 |
|                              | ENGINE                       | 84.22 <sub>±0.4</sub> | 46 72.14 <sub>±</sub>   | <b>0.74</b> 77.84                    | e0.27 80.94          | $4_{\pm 0.19}$ (     | $67.14_{\pm 0.46}$                 | $69.67_{\pm 0.16}$                    |                    | $32.89_{\pm 0.14}$     | $84.33_{\pm 0.57}$          | $86.42_{\pm 0.23}$ | 78.40 |
| Explainer                    | TAPE                         | 84.04 <sub>±0.2</sub> | $_{24}$ 71.87 $_{\pm}$  | 0.35 78.61                           | <b>81.9</b>          | 4 <sub>±0.16</sub> 6 | $66.07_{\pm 0.10}$                 | $62.43_{\pm 0.47}$                    |                    | $84.92_{\pm 0.26}$     | $\textbf{86.46}_{\pm 0.12}$ | $89.52_{\pm0.04}$  | 78.43 |
|                              | LLM <sub>IT</sub>            | 67.00 <sub>±0.1</sub> | 6 54.26±0               | <b>80.99</b>                         | ±0.43 75.02          | $2_{\pm 0.16}$ 4     | $41.83_{\pm 0.47}$                 | 54.09+1.02                            |                    | $30.92_{\pm 1.38}$     | $71.28_{\pm 1.81}$          | $66.99_{\pm 2.02}$ | 65.76 |
| Predictor                    | GraphGPT                     | $64.72_{\pm 1.5}$     | $64.58_{\pm 1}$         | .55 70.34                            | 2.27 70.7            | $1_{\pm 0.37}$ 6     | $52.88_{\pm 2.14}$                 | $58.25_{\pm 0.37}$                    |                    | $31.13_{\pm 1.52}$     | $77.48_{\pm 0.78}$          | $80.10_{\pm 0.76}$ | 70.02 |
|                              | LLaGA                        | $78.94_{\pm1.1}$      | $_4$ 62.61 $_{\pm 3}$   | 8.63 <b>65.9</b> 1                   | <sub>2.09</sub> 76.4 | $7_{\pm 2.20}$ 6     | $55.84_{\pm 0.72}$                 | 70.10                                 | ±0.38 8            | $33.47_{\pm 0.45}$     | $84.44_{\pm 0.90}$          | $87.82_{\pm0.53}$  | 75.07 |
|                              |                              |                       |                         |                                      |                      |                      |                                    |                                       |                    |                        |                             |                    |       |
| Supervised                   |                              | Cora                  | Citeseer                | Pubmed                               | arXiv                | WikiC                | S Instag                           | ram Reddit                            |                    | Books                  | Photo                       | Computer           | Avg.  |
|                              | GCNShallowEmb                | $87.41_{\pm 2.08}$    | $75.74_{\pm1.20}$       | $89.01_{\pm0.59}$                    | $71.39_{\pm0.28}$    | $83.67_{\pm0}$       | 63.94                              | ±0.61 6                               | $55.07_{\pm 0.38}$ | $76.94_{\pm0.26}$      | $73.34_{\pm1.34}$           | $77.16_{\pm 3.80}$ | 76.37 |
|                              | SAGEShallowEmb               | $87.44_{\pm 1.74}$    | $74.96_{\pm 1.20}$      | $90.47_{\pm 0.25}$                   | $71.21_{\pm 0.18}$   | $84.86_{\pm0}$       | .91 <b>64.14</b>                   | ±0.47 6                               | $51.52_{\pm 0.60}$ | $79.40_{\pm 0.45}$     | $84.59_{\pm0.32}$           | $87.77_{\pm 0.34}$ | 78.64 |
| Classic                      | GATShallowEmb                | $86.68_{\pm 1.12}$    | $73.73_{\pm 0.94}$      | $73.73_{\pm 0.94}  88.25_{\pm 0.47}$ |                      | $83.94_{\pm 0}$      | 0.61 <b>64.93</b>                  | $_{\pm 0.75}$ 64.16 $_{\pm 1}$        |                    | $80.61_{\pm 0.49}$     | $84.84_{\pm 0.69}$          | $88.32_{\pm 0.24}$ | 78.70 |
| Clussic                      | SenBERT-66M                  | $79.61_{\pm 1.40}$    | $74.06_{\pm 1.26}$      | $94.47_{\pm 0.33}$                   | $72.66_{\pm 0.24}$   | $86.51_{\pm 0}$      | $60.11_{\pm}$                      | $_{\pm 0.93}$ 58.70 $_{\pm 0.54}$     |                    | $85.99_{\pm 0.58}$     | $77.72_{\pm 0.35}$          | $74.22_{\pm 0.21}$ | 76.40 |
|                              | RoBERTa-355M                 | $83.17_{\pm 0.84}$    | $75.90_{\pm 1.69}$      | $94.84_{\pm 0.06}$                   | $74.12_{\pm 0.12}$   | $87.47_{\pm 0}$      | <b>63.75</b>                       | $63.75_{\pm 1.13}$ $60.61_{\pm 1.13}$ |                    | $86.65_{\pm 0.38}$     | $79.45_{\pm 0.37}$          | $75.76_{\pm 0.30}$ | 78.17 |
|                              | GLEM                         | $86.81_{\pm 1.19}$    | $73.24_{\pm 1.55}$      | $93.98_{\pm 0.32}$                   | $73.55_{\pm 0.22}$   | $79.81_{\pm 0}$      | <sub>0.45</sub> 67.39 <sub>-</sub> | ±1.73 5                               | $53.11_{\pm 2.96}$ | $83.98_{\pm 0.97}$     | $78.16_{\pm 0.45}$          | $81.63_{\pm 0.46}$ | 77.17 |
| Encoder                      | GCN <sub>LLMEmb</sub>        | $88.15_{\pm 1.79}$    | $76.45_{\pm1.19}$       | $88.38_{\pm0.68}$                    | $74.39_{\pm0.31}$    | $84.78_{\pm0}$       | .86 68.27                          | ±0.45 7                               | $70.65_{\pm 0.75}$ | $84.23_{\pm0.20}$      | $86.07_{\pm0.20}$           | $89.52_{\pm0.31}$  | 81.09 |
| Littouer                     | ENGINE                       | 87.00 $\pm 1.60$      | $75.82_{\pm 1.52}$      | $90.08_{\pm0.16}$                    | $74.69_{\pm 0.36}$   | $85.44_{\pm 0}$      | 0.53 <b>68.87</b>                  | ±0.25                                 | $71.21_{\pm 0.77}$ | $84.09_{\pm 0.09}$     | $86.98_{\pm 0.06}$          | $89.05_{\pm 0.13}$ | 81.32 |
| Explainer                    | TAPE                         | $88.05_{\pm 1.76}$    | $76.45_{\pm1.60}$       | $93.00_{\pm0.13}$                    | $74.96_{\pm0.14}$    | 87.11±0              | 0.66 68.11 <sub>-</sub>            | ±0.54 6                               | $66.22_{\pm 0.83}$ | $85.95_{\pm0.59}$      | $87.72_{\pm 0.28}$          | $90.46_{\pm 0.18}$ | 81.80 |
|                              | LLM <sub>IT</sub>            | $71.93_{\pm1.47}$     | $60.97_{\pm 3.97}$      | $94.16_{\pm0.19}$                    | 76.08                | $80.61_{\pm 0}$      | .47 44.20                          | ±3.06 5                               | $58.30_{\pm 0.48}$ | $84.80_{\pm 0.13}$     | $78.27_{\pm 0.54}$          | $74.51_{\pm 0.53}$ | 72.38 |
| Predictor                    | GraphGPT                     | $82.29_{\pm 0.26}$    | $74.67_{\pm 1.15}$      | $93.54_{\pm 0.22}$                   | $75.15_{\pm0.14}$    | $82.54_{\pm 0}$      | . <sub>23</sub> 67.00 <sub>±</sub> | ±1.22 6                               | $50.72_{\pm 1.47}$ | $85.38_{\pm 0.72}$     | $84.46_{\pm0.36}$           | $86.78_{\pm 1.14}$ | 79.25 |
|                              | LLaGA                        | $87.55_{\pm 1.15}$    | $76.73_{\pm 1.70}$      | $90.28_{\pm0.91}$                    | $74.49_{\pm0.23}$    | $84.03_{\pm 1}$      | .10 <b>69.16</b>                   | ±0.72                                 | $71.06_{\pm 0.38}$ | $85.56_{\pm 0.30}$     | $87.62_{\pm 0.30}$          | $90.41_{\pm 0.12}$ | 81.69 |

| Zero-shot -            |                                                                          |                     |          |                       |          |                   |                       |                      |                |       |                |          | LLM                | vs. LM a    | as Encoc               | ler                 |                        |                            |
|------------------------|--------------------------------------------------------------------------|---------------------|----------|-----------------------|----------|-------------------|-----------------------|----------------------|----------------|-------|----------------|----------|--------------------|-------------|------------------------|---------------------|------------------------|----------------------------|
| Type & LLM             | Method                                                                   | <b>Cora</b> (82.52) |          | <b>WikiCS</b> (68.67) |          | Instagram (63.35) |                       | <b>Photo</b> (78.50) |                | Avg.  |                |          | Method             | Encoder     | Cornell                | Texas               | Wisconsin              | Washington                 |
| Type & EEM             |                                                                          | Acc                 | Macro-F1 | Acc                   | Macro-F1 | Acc               | Macro-F1              | Acc                  | Macro-F1       | Acc   | Macro-F1       |          | Homophil           | v Ratio (%) | 11 55                  | 6 69                | 16.27                  | 17.07                      |
| LLM<br>GPT-4o          | Direct                                                                   | 68.08               | 69.25    | 68.59                 | 63.21    | 44.53             | 42.77                 | 63.99                | 61.09          | 61.30 | 59.08          | -        | Homophin           |             | 50.50                  |                     | 71.00                  | (2.2)                      |
|                        | CoT                                                                      | 68.89               | 69.86    | 70.75                 | 66.23    | 47.87             | 47.57                 | 61.61                | 60.62          | 62.28 | 61.07          |          |                    | SenBERT     | $50.59_{\pm 3.14}$     | $56.67_{\pm 2.15}$  | $71.98_{\pm 1.59}$     | $63.26_{\pm 2.89}$         |
|                        | ТоТ                                                                      | 68.29               | 69.13    | 70.78                 | 65.69    | 44.16             | 42.68                 | 60.84                | 59.16          | 61.02 | 59.16          |          | MLP                | ROBERIA     | $59.08_{\pm 2.57}$     | $67.47_{\pm 1.29}$  | $73.87_{\pm 1.62}$     | $65.43_{\pm 3.44}$         |
|                        | ReAct                                                                    | 68.21               | 69.28    | 69.45                 | 66.03    | 44.49             | 43.16                 | 63.63                | 60.82          | 61.44 | 59.82          |          |                    | Qwen-3B     | $57.78_{\pm 3.24}$     | $76.27_{\pm 1.61}$  | $82.36_{\pm 1.62}$     | $75.11_{\pm 1.92}$         |
|                        | w. Neighbor                                                              | 70.30               | 71.44    | 69.69                 | 64.51    | 42.42             | 39.79                 | 69.93                | 68.55          | 63.09 | 61.07          | -        |                    | Mistral-/B  | 59.87 <sub>±6.72</sub> | / <b>6.</b> 2/±1.08 | 83.30 <sub>±1.42</sub> | $74.24 \pm 0.88$           |
|                        | w. Summary                                                               | 71.40               | 72.13    | 70.90                 | 65.42    | 45.02             | 44.62                 | 72.63                | 70.84          | 64.99 | 63.25          |          |                    | SenBERT     | $46.80_{\pm 2.13}$     | $54.93_{\pm0.68}$   | $58.30_{\pm 2.56}$     | $52.61_{\pm 1.35}$         |
| <b>LLM</b><br>LLaMA-8B | Direct                                                                   | 62.64               | 63.02    | 56.77                 | 53.04    | 37.58             | 29.70                 | 41.23                | 44.26          | 49.56 | 47.50          |          | GCN                | RoBERTa     | $47.06_{\pm 2.19}$     | $55.20_{\pm 2.78}$  | $54.91_{\pm 3.40}$     | $54.89_{\pm 1.50}$         |
|                        | СоТ                                                                      | 62.04               | 62.61    | 58.88                 | 56.00    | 42.00             | 39.06                 | 44.22                | 47.13          | 51.78 | 51.20          |          |                    | Qwen-3B     | $53.59_{\pm 2.07}$     | $56.80_{\pm 4.29}$  | $03.02_{\pm 2.16}$     | 04.50 <sub>±4.06</sub>     |
|                        | ТоТ                                                                      | 34.06               | 33.30    | 40.35                 | 41.15    | 45.33             | 45.27                 | 31.31                | 34.00          | 37.76 | 38.43          | -        |                    | Mistral-/B  | <b>54.04</b> ±1.52     | 58.0/±3.60          | $62.08 \pm 2.61$       | $61.52 \pm 3.61$           |
|                        | ReAct                                                                    | 36.55               | 38.04    | 22.40                 | 25.76    | 44.67             | 44.42                 | 27.03                | 28.96          | 32.66 | 34.30          |          |                    | SenBERT     | $52.55_{\pm 1.58}$     | $61.73_{\pm 1.37}$  | $70.47_{\pm 1.75}$     | $65.54_{\pm 2.44}$         |
|                        | w. Neighbor                                                              | 64.55               | 64.41    | 59.43                 | 54.16    | 36.98             | 28.32                 | 45.49                | 50.44          | 51.61 | 49.33          |          | SAGE               | RoBERTa     | $55.55_{\pm 3.44}$     | $64.26_{\pm 6.26}$  | $73.59_{\pm 2.72}$     | $66.08_{\pm 1.60}$         |
|                        | w. Summary                                                               | 64.69               | 64.62    | 62.69                 | 56.40    | 37.59             | 30.91                 | 48.11                | 52.20          | 53.27 | 51.03          |          | SAUL               | Qwen-3B     | $57.13_{\pm 2.29}$     | $78.53_{\pm 1.76}$  | $83.21_{\pm 1.39}$     | $72.18_{\pm 3.66}$         |
| GFM                    | ZaroG                                                                    | 62 55               | 57 56    | 62 71                 | 57 87    | 50 71             | 50.43                 | 16 27                | 51 52          | 55 56 | 54 35          |          |                    | Mistral-7B  | $56.86_{\pm 1.37}$     | $76.53_{\pm 2.40}$  | $83.96_{\pm 1.55}$     | $73.91_{\pm 0.97}$         |
|                        |                                                                          | 52 58               | 51.80    | 60.83                 | 53 50    | <i>J</i> 1 58     | <b>30.43</b><br>26.26 | 40.27                | 51.52<br>AA 85 | 51.06 | 5 <b>4.</b> 55 | -        |                    | SenBERT     | $56.34_{\pm 1.67}$     | $66.67_{+2.95}$     | $73.40_{\pm 1.68}$     | $70.55_{\pm 4.95}$         |
|                        |                                                                          | 18.82               | 8 /0     | 8 20                  | 8 20     | 41.50             | 20.20<br>47 70        | 30 18                | 4.05           | 28.53 | 17 30          |          | H <sub>2</sub> GCN | RoBERTa     | $60.00_{\pm 3.54}$     | $68.13_{\pm 2.93}$  | $75.66_{\pm 2.12}$     | $71.52_{\pm 1.22}$         |
|                        | LLaOA                                                                    | 10.02               | 0.49     | 0.20                  | 0.29     | 47.95             | 47.70                 | 59.10                | 4.71           | 20.55 | 17.50          | F        |                    | Qwen-3B     | $61.57_{\pm 3.89}$     | $80.13_{\pm 6.45}$  | $84.53_{\pm 0.70}$     | <b>74.67</b> $_{\pm 1.77}$ |
|                        |                                                                          |                     |          |                       |          |                   |                       |                      |                |       |                |          |                    | Mistral-7B  | $59.22_{\pm 4.54}$     | $72.93_{\pm 8.21}$  | $81.89_{\pm 1.51}$     | $68.59_{\pm 4.46}$         |
| Takeaw                 | Takeaways (6) CFMs can outnerform onen-source LI Ms but still fall short |                     |          |                       |          |                   |                       |                      |                |       | <b>Fakea</b>   | WANE (8) | ) I I M_22         | s-Encode    | er signifi             |                     |                        |                            |

of strong LLMs like GPT-40. (7) LLM direct inference can be improved by appropriately incorporating structural information



## Takeaways

(1) Appropriately incorporating LLMs **consistently** improves the performance

(2) LLM-based methods provide greater improvements in semi-supervised settings than in supervised settings.

(3) LLM-as-Explainer methods are highly effective when **labels heavily** depend on text.

(4) LLM-as-Encoder methods balance computational cost and accuracy effectively.

(5) LLM-as-Predictor methods are more effective when labeled data is **abundant**.



More experiments and findings can be found in our paper!



🙄 Project Page

LIVI-as-Lincouci significanti outperforms LMs when graph structure is less informative about the labels, e.g., heterophilic ones