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Task Introduction
1 Motivation

Community Detection

e Task Definition: detect subgraphs where nodes
are closely related, i.e., communities

e Drawbacks: fail to pinpoint a particular kind of
community, i.e., targeted community

e Case: cannot distinguish fraudulent groups from
normal ones in transaction networks
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Task Introduction
1 Motivation

Semi-supervised Community Detection

e Task Definition: utilize certain communities as
training data to recognize the other similar
communities in the network

e Applications: detect fraud groups in transaction
networks; identify social spammer groups in
social networks, ...

4/17

Input: network + training communities
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Semi-supervised Community Detection
Algorithm

Output: targeted community ©



Existing Methods

1 Motivation

Existing methods can be generalized as seed-based

e Methodology: first locate seed nodes (central
nodes), then develop communities around seeds
e Drawbacks: quite sensitive to the quality of
selected seeds :(
— Bespoke: inflexible as returning 1-ego net
— SEAL: time-consuming as generating via
sequential decisions
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Existing Semi-supervised Algorithms

Step 1 Step 2
Located Generate communities
seed node around the seed

e.g. Bespoke: 1-ego net
o2 oo SEAL: sequential decision
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Our Framework
1 Motivation

We propose a novel subgraph-based inference
framework:
e Methodology: first locate candidate
communities, then refine their structures
o Benefits

— More precise positioning (subgraph vs. node)
— More efficient
— Further optimization
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CLARE Overview

1 Motivation

We propose CLARE consisting of Community Locator And Community REwriter
e Community Locator: locate potential communities by seeking subgraphs that are
similar to training ones
e Community Rewriter: refine located communities’ structures enhanced by RL
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Task Definition

2 Methodology

Semi-supervised Community Detection

Given a graph G = (V, £,X) where V is the set of nodes, £ is the set of edges, and X is the
node feature matrix.

With m labeled communities as training data C = {C!, C?, ..., C™}(V™,C' C G), our goal
is to find the set of other similar communities C in G.
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Community Locator
2 Methodology

We first encode all training communities and candidate communities, and then locate the
potential ones in candidate sets based on similarity.
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Community Encoder: For node v, its raw features are x(u), after k-layers GNN, its
final embedding is denoted as z(u) € RY; For a specific community C', its embedding
is calculated as z(C') = >, i 2(v).

Similarity: We implement community order embedding: if community C% is a
subgraph of community C?, then corresponding embedding z(C%) has to be in the
“lower-left” of z(C?): z(C%)[i] < z(CP)[i], V4 ,,iff C* C CP. Therefore, the distance
of two communities’ embedding can be regarded as a measure of similarity.
Matching: Encode training communities as Z = {z(C'), ... ,z(C™)}, candidate
communities as Z = {z(C'), ..., z(CV1)} (C' denotes the k-ego net of node i € V).

N

Thenthen (n = ﬁ) candidate communities closest to each training one in the

embedding space are considered as predicted results.



Community Rewriter
2 Methodology

In Community Locator, for efficiently locating potential communities, we regard the k-ego
net of each node in the network as a candidate community. Such an assumption on the
structure of predicted communities is quite inflexible. Therefore, we propose rewriter to
intelligently refine their structures.
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Summary
2 Methodology

Firstly, we train the community locator by leveraging known communities.

Then we take each training community as a pattern for matching n closest candidate
communities in the embedding space (n = %). Actually, the k-ego net of each node
in the network serves as a candidate. After matching, we can get N raw predicted
communities.

Next, we train the community rewriter via policy gradient’.

For each community detected in the first stage, it is fed to well-trained agent and
refined into a new community.

Finally, we obtain N modified communities as final results.

"For more details, please refer to our original paper
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Experimental Setup

3 Experiments

e Datasets:

— Single datasets: real-world networks containing
overlapping communities

— Hybrid datasets: combination of two different
single datasets (by randomly adding

#N #E #C  CMax Caog
cross-network links) to simulate a Iarger Amazon 6926 17893 1000 30  9.38
. . . DBLP g \ X :
network with different types of communities Lvcoumal 69860 S 1000 30 1300
e Baselines: Amazon+DBLP 43946 172394 2000 30 888

DBLP+Livejournal 106,880 1,070,680 2,000 30 10.69

— Community detection methods: BigClam, ComE,
CommunityGAN, vGraph

— Semi-supervised community detection
methods: Bespoke and SEAL

e Evaluation Metrics: F1, Jaccard, and ONMI
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Overall Performance

3 Experiments

Table 3: Summary of the performance in comparison with baselines. N/A means the model fails to converge in 2 days. We
report the results of CLARE with k=1 on DBLP while k=2 on all other datasets.

| Dataset BigClam BigClam-A ComE CommunityGAN ~vGraph | Bespoke ~SEAL ~CLARE
Amazon 0.6885 0.6562 0.6569 0.6701 0.6895 0.5193 0.7252  0.7730

DBLP 03217 03242 N/A 0.3541 01134 | 02956 02914 0.3835

Livejournal 03917 03934 N/A 0.4067 00429 | 01706 04638 0.4950

F1 Amazon*DBLP 0.1759 0.1745 N/A 0.0204 0.0769 0.0641 0.2733  0.3988
DBLP*Amazon  0.2363 0.2346 N/A 0.0764 01002 | 0.2464 01317 0.2901
DBLP*Livejournal ~ 0.0909 0.0859 N/A 00251 00131 | 0.0817 0.1906 0.2480
LivejoumaI'DBLP 0.2183 0.2139 N/A 0.0142 0.0206 0.1893 0.2291  0.2894
Amazon 0.5874 0.5623 0.5691 0.6045 0.5721 0.4415 0.6792  0.6827

DBLP 0.2186 0.2203 N/A 0.2830 00645 | 02593 02143 03132

Livejournal 0.3102 0.3076 N/A 0.3183 0.0222 0.1324 0.3795  0.4027

Jaccard | Amazon®DBLP  0.1102 0.1095 N/A 0.0109 00421 | 0.0488 0.3241
DBLP*Amazon 0.1485 0.1478 N/A 0.0610 0.0555 0.2135 0.0879  0.2166
DBLP*Livejournal ~ 0.0523 0.0485 N/A 00120 00066 | 0.0756  0.1485 0.1893
LivejoumaI‘DBLP 0.1505 0.1464 N/A 0.0097 0.0105 0.1503 0.1907 0.2308
Amazon 0.5865 0.5625 0.5570 0.6040 0.5532 0.4129 0.6862  0.7015

DBLP 0.1113 0.1110 N/A 0.2324 00020 | 0.2347 0.1603 0.2600

Livejournal 0.2696 0.2641 N/A 03171 <le-4 | 01024 03695 0.3703

ONMI | Amazon®DBLP  0.0305 0.0334 N/A <le-4 <led | 0.0364 02475 0.3126
DBLP*Amazon 0.0471 0.0477 N/A 0.0523 <le-4 0.1780 0.0380 0.1566
DBLP*Livejournal ~ 0.0113 0.0065 N/A <le-4 <le-4 | 00723 01155 0.1331
LivejoumaI‘DBLP 0.0858 0.0795 N/A 0.0053 <le-4 0.1248 0.1906  0.2012
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Ablation Study

3 Experiments

Community Rewriter learns quite different rewriting heuristics for different networks,
showing its adaptability and flexibility.

Amazon LiveJournal

Before ] \
Rewriting / o \

After
Rewriting

(@ Node in the same ground-truth community Node not in the same ground-truth community

Figure 5: Case study of the community rewriter. On Amazon,
many undetected nodes can be correctly absorbed while ir-
relevant nodes are correctly removed on Livejournal.
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e Paper Title: CLARE: A Semi-supervised Community Detection Algorithm
e Code: https://github.com/FDUDSDE/KDD2022CLARE
e Contact: Xixi Wu (xxwu1120@gmail.com / 21210240043@m.fudan.edu.cn)

17/17


https://github.com/FDUDSDE/KDD2022CLARE
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