

CLARE: A Semi-supervised Community Detection Algorithm

Xixi Wu¹ , Yun Xiong¹ , Yao Zhang¹ , Yizhu Jiao² , Caihua Shan³ , Yiheng Sun⁴ , Yangyong Zhu¹ , and Philip S. Yu⁵

¹School of Computer Science, Fudan University ² University of Illinois at Urbana-Champaign

 3 Microsoft Research Asia 4 Tencent Weixin Group 5 University of Illinois at Chicago

June 22, 2023

28Th ACM **SIGKDD CONFERENCE**

ON KNOWLEDGE DISCOVERY **AND DATA MINING**

Washington DC, August 14-18, 2022

Table of Contents 1 Motivation

▶ [Motivation](#page-1-0)

Task Introduction 1 Motivation

Community Detection

- **Task Definition:** detect subgraphs where nodes are closely related, *i.e.*, communities
- **Drawbacks:** fail to pinpoint a particular kind of community, *i.e.*, targeted community
- **Case:** cannot distinguish fraudulent groups from normal ones in transaction networks

Task Introduction 1 Motivation

Semi-supervised Community Detection n
R

- **Task Definition:** utilize certain communities as training data to recognize the other similar **Normal Groups** communities in the network
- **Applications:** detect fraud groups in transaction networks; identify social spammer groups in social networks, ...

Existing Methods 1 Motivation

Existing methods can be generalized as **seed-based**

- **Methodology:** *first locate seed nodes (central nodes), then develop communities around seeds*
- **Drawbacks:** quite **sensitive** to the quality of selected seeds :(
	- **Bespoke:** inflexible as returning 1-ego net
	- **SEAL:** time-consuming as generating via sequential decisions

Our Framework 1 Motivation

We propose a novel **subgraph-based** inference framework:

- **Methodology:** first locate candidate *communities, then refine their structures* **Step 1 Located Step 2 Generate communities**
- **Benefits**
	- $-$ More precise positioning (subgraph vs. node)
	- More efficient
	- Further optimization

CLARE Overview 1 Motivation

We propose **CLARE** consisting of **C**ommunity **L**ocator **A**nd Community **RE**writer

- Community Locator: locate potential communities by seeking subgraphs that are similar to training ones
- Community Rewriter: refine located communities' structures enhanced by RL

Figure: CLARE framework overview

Table of Contents 2 Methodology

Semi-supervised Community Detection

Given a graph $G = (\mathcal{V}, \mathcal{E}, \mathbf{X})$ where V is the set of nodes, \mathcal{E} is the set of edges, and **X** is the node feature matrix. With m labeled communities as training data $\dot{\mathcal{C}}=\{\dot{\mathcal{C}}^1,\dot{\mathcal{C}}^2,...,\dot{\mathcal{C}}^m\}(\forall^m_{i=1}\dot{\mathcal{C}}^i\subset G)$, our goal

is to find the set of other similar communities \hat{C} in G .

Community Locator 2 Methodology

We first encode all training communities and candidate communities, and then locate the potential ones in candidate sets based on similarity.

- **Community Encoder:** For node *v*, its raw features are **x**(*u*), after *k*-layers GNN, its final embedding is denoted as $\mathbf{z}(u) \in \mathbb{R}^{d}$; For a specific community \mathcal{C}^{i} , its embedding is calculated as $z(\mathcal{C}^i) = \sum_{v \in \mathcal{C}^i} z(v)$.
- Similarity: We implement community order embedding: if community C^a is a subgraph of community \mathcal{C}^b , then corresponding embedding $\mathbf{z}(\mathcal{C}^a)$ has to be in the \bullet "lower-left" of $\mathbf{z}(C^b)$: $\mathbf{z}(C^a)[i] \leq \mathbf{z}(C^b)[i], \; \forall_{i=1}^d,$ iff $C^a \subseteq C^b.$ Therefore, the distance of two communities' embedding can be regarded as a measure of similarity.
- Matching: Encode training communities as $\mathbf{Z} = \{\mathbf{z}(\dot{C}^1), \dots, \mathbf{z}(\dot{C}^m)\}$, candidate communities as $\mathbf{Z}=\{\mathbf{z}(\mathcal{C}^1),\, ...\,,\, \mathbf{z}(\mathcal{C}^{|\mathcal{V}|})\}$ (\mathcal{C}^i denotes the k -ego net of node $i\in \mathcal{V}$). Then the *n* ($n = \frac{N}{m}$ *m*) candidate communities **closest to each training one** in the embedding space are considered as predicted results.

Community Rewriter 2 Methodology

In Community Locator, for efficiently locating potential communities, we regard the *k*-ego net of each node in the network as a candidate community. Such an assumption on the structure of predicted communities is quite inflexible. Therefore, we propose rewriter to intelligently refine their structures.

Figure: Illustration of rewriting process

- Firstly, we train the community locator by leveraging known communities.
- Then we take each training community as a pattern for matching *n* closest candidate communities in the embedding space ($n = \frac{N}{m}$ $\frac{N}{m}$). Actually, the *k*-ego net of each node in the network serves as a candidate. After matching, we can get *N* raw predicted communities.
- \bullet Next, we train the community rewriter via policy gradient¹.
- For each community detected in the first stage, it is fed to well-trained agent and refined into a new community.
- Finally, we obtain *N* modified communities as final results.

¹ For more details, please refer to our original paper

Table of Contents 3 Experiments

 \blacktriangleright [Experiments](#page-12-0)

• **Datasets:**

- Single datasets: real-world networks containing overlapping communities
- Hybrid datasets: combination of two different single datasets (by randomly adding cross-network links) to simulate a larger network with different types of communities

• **Baselines:**

- Community detection methods: BigClam, ComE, CommunityGAN, vGraph
- Semi-supervised community detection methods: Bespoke and SEAL
- **Evaluation Metrics:** F1, Jaccard, and ONMI

Overall Performance 3 Experiments

Table 3: Summary of the performance in comparison with baselines. N/A means the model fails to converge in 2 days. We report the results of CLARE with $k=1$ on DBLP while $k=2$ on all other datasets.

Community Rewriter learns quite different rewriting heuristics for different networks, showing its adaptability and flexibility.

Figure 5: Case study of the community rewriter. On Amazon, many undetected nodes can be correctly absorbed while irrelevant nodes are correctly removed on Livejournal.

- **Paper Title: CLARE: A Semi-supervised Community Detection Algorithm**
- **Code:** <https://github.com/FDUDSDE/KDD2022CLARE>
- **Contact:** [Xixi Wu \(xxwu1120@gmail.com / 21210240043@m.fudan.edu.cn\)](https://wxxshirley.github.io/)