

CLARE: A Semi-supervised Community Detection Algorithm

Xixi Wu¹, Yun Xiong¹, Yao Zhang¹, Yizhu Jiao², Caihua Shan³, Yiheng Sun⁴, Yangyong Zhu¹, and Philip S. Yu⁵

¹School of Computer Science, Fudan University ²University of Illinois at Urbana-Champaign

³Microsoft Research Asia ⁴Tencent Weixin Group ⁵University of Illinois at Chicago

June 22, 2023

28Th ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY

AND DATA MINING Washington DC , August 14-18, 2022

Table of Contents 1 Motivation

► Motivation

Methodology

► Experiments

Task Introduction

Community Detection

- Task Definition: detect subgraphs where nodes are closely related, *i.e.*, communities
- **Drawbacks:** fail to pinpoint a particular kind of community, *i.e.*, targeted community
- **Case:** cannot distinguish fraudulent groups from normal ones in transaction networks

Task Introduction

Semi-supervised Community Detection

- Task Definition: utilize certain communities as training data to recognize the other similar communities in the network
- Applications: detect fraud groups in transaction networks; identify social spammer groups in social networks, ...

Existing Methods 1 Motivation

Existing methods can be generalized as seed-based

- Methodology: first locate seed nodes (central nodes), then develop communities around seeds
- Drawbacks: quite sensitive to the quality of selected seeds :(
 - Bespoke: inflexible as returning 1-ego net
 - SEAL: time-consuming as generating via sequential decisions

Existing Semi-supervised Algorithms

Step 2 Generate communities around the seed

e.g. **Bespoke**: 1-ego net **SEAL**: sequential decision

Our Framework

We propose a novel **subgraph-based** inference framework:

- Methodology: first locate candidate communities, then refine their structures
- Benefits
 - More precise positioning (subgraph vs. node)
 - More efficient
 - Further optimization

CLARE Overview

We propose CLARE consisting of Community Locator And Community REwriter

- Community Locator: locate potential communities by seeking subgraphs that are similar to training ones
- Community Rewriter: refine located communities' structures enhanced by RL

Figure: CLARE framework overview

Table of Contents2 Methodology

Motivation

Experiments

Semi-supervised Community Detection

Given a graph $G = (\mathcal{V}, \mathcal{E}, \mathbf{X})$ where \mathcal{V} is the set of nodes, \mathcal{E} is the set of edges, and \mathbf{X} is the node feature matrix.

With *m* labeled communities as training data $\dot{C} = {\dot{C}^1, \dot{C}^2, ..., \dot{C}^m} (\forall_{i=1}^m \dot{C}^i \subset G)$, our goal is to find the set of other similar communities \hat{C} in *G*.

Community Locator 2 Methodology

We first encode all training communities and candidate communities, and then locate the potential ones in candidate sets based on similarity.

- Community Encoder: For node v, its raw features are $\mathbf{x}(u)$, after k-layers GNN, its final embedding is denoted as $\mathbf{z}(u) \in \mathbb{R}^d$; For a specific community C^i , its embedding is calculated as $z(C^i) = \sum_{v \in C^i} z(v)$.
- Similarity: We implement community order embedding: if community C^a is a subgraph of community C^b, then corresponding embedding z(C^a) has to be in the "lower-left" of z(C^b): z(C^a)[i] ≤ z(C^b)[i], ∀^d_{i=1}, iff C^a ⊆ C^b. Therefore, the distance of two communities' embedding can be regarded as a measure of similarity.
- Matching: Encode training communities as Ż = {z(Ċ¹), ..., z(Ċ^m)}, candidate communities as Z = {z(C¹), ..., z(C^{|V|})} (Cⁱ denotes the *k*-ego net of node *i* ∈ V). Then the *n* (*n* = ^N/_m) candidate communities closest to each training one in the embedding space are considered as predicted results.

Community Rewriter ² Methodology</sup>

In Community Locator, for efficiently locating potential communities, we regard the k-ego net of each node in the network as a candidate community. Such an assumption on the structure of predicted communities is quite inflexible. Therefore, we propose rewriter to intelligently refine their structures.

Figure: Illustration of rewriting process

- Firstly, we train the community locator by leveraging known communities.
- Then we take each training community as a pattern for matching *n* closest candidate communities in the embedding space $(n = \frac{N}{m})$. Actually, the *k*-ego net of each node in the network serves as a candidate. After matching, we can get *N* raw predicted communities.
- Next, we train the community rewriter via policy gradient¹.
- For each community detected in the first stage, it is fed to well-trained agent and refined into a new community.
- Finally, we obtain *N* modified communities as final results.

¹For more details, please refer to our original paper

Table of Contents 3 Experiments

Motivation

Methodology

► Experiments

Experimental Setup 3 Experiments

• Datasets:

- Single datasets: real-world networks containing overlapping communities
- Hybrid datasets: combination of two different single datasets (by randomly adding cross-network links) to simulate a larger network with different types of communities

• Baselines:

- Community detection methods: BigClam, ComE, CommunityGAN, vGraph
- Semi-supervised community detection methods: Bespoke and SEAL
- Evaluation Metrics: F1, Jaccard, and ONMI

	#N	#E	#C	C_{Max}	C_{Avg}
Amazon	6,926	17,893	1,000	30	9.38
DBLP	37,020	149,501	1,000	16	8.37
Livejournal	69,860	911,179	1,000	30	13.00
Amazon+DBLP	43,946	172,394	2,000	30	8.88
DBLP+Livejournal	106,880	1,070,680	2,000	30	10.69

Overall Performance 3 Experiments

Table 3: Summary of the performance in comparison with baselines. N/A means the model fails to converge in 2 days. We report the results of CLARE with k=1 on DBLP while k=2 on all other datasets.

	Dataset	BigClam	BigClam-A	ComE	CommunityGAN	vGraph	Bespoke	SEAL	CLARE
F1	Amazon	0.6885	0.6562	0.6569	0.6701	0.6895	0.5193	0.7252	0.7730
	DBLP	0.3217	0.3242	N/A	0.3541	0.1134	0.2956	0.2914	0.3835
	Livejournal	0.3917	0.3934	N/A	0.4067	0.0429	0.1706	0.4638	0.4950
	Amazon*DBLP	0.1759	0.1745	N/A	0.0204	0.0769	0.0641	0.2733	0.3988
	DBLP*Amazon	0.2363	0.2346	N/A	0.0764	0.1002	0.2464	0.1317	0.2901
	DBLP*Livejournal	0.0909	0.0859	N/A	0.0251	0.0131	0.0817	0.1906	0.2480
	Livejournal*DBLP	0.2183	0.2139	N/A	0.0142	0.0206	0.1893	0.2291	0.2894
Jaccard	Amazon	0.5874	0.5623	0.5691	0.6045	0.5721	0.4415	0.6792	0.6827
	DBLP	0.2186	0.2203	N/A	0.2830	0.0645	0.2593	0.2143	0.3132
	Livejournal	0.3102	0.3076	N/A	0.3183	0.0222	0.1324	0.3795	0.4027
	Amazon*DBLP	0.1102	0.1095	N/A	0.0109	0.0421	0.0488	0.2419	0.3241
	DBLP*Amazon	0.1485	0.1478	N/A	0.0610	0.0555	0.2135	0.0879	0.2166
	DBLP*Livejournal	0.0523	0.0485	N/A	0.0120	0.0066	0.0756	0.1485	0.1893
	Livejournal*DBLP	0.1505	0.1464	N/A	0.0097	0.0105	0.1503	0.1907	0.2308
ONMI	Amazon	0.5865	0.5625	0.5570	0.6040	0.5532	0.4129	0.6862	0.7015
	DBLP	0.1113	0.1110	N/A	0.2324	0.0020	0.2347	0.1603	0.2600
	Livejournal	0.2696	0.2641	N/A	0.3171	<1e-4	0.1024	0.3695	0.3703
	Amazon*DBLP	0.0305	0.0334	N/A	<1e-4	< 1e-4	0.0364	0.2475	0.3126
	DBLP*Amazon	0.0471	0.0477	N/A	0.0523	<1e-4	0.1780	0.0380	0.1566
	DBLP*Livejournal	0.0113	0.0065	N/A	<1e-4	<1e-4	0.0723	0.1155	0.1331
	Livejournal*DBLP	0.0858	0.0795	N/A	0.0053	<1e-4	0.1248	0.1906	0.2012

Community Rewriter learns quite different rewriting heuristics for different networks, showing its adaptability and flexibility.

Figure 5: Case study of the community rewriter. On Amazon, many undetected nodes can be correctly absorbed while irrelevant nodes are correctly removed on Livejournal.

- Paper Title: CLARE: A Semi-supervised Community Detection Algorithm
- Code: https://github.com/FDUDSDE/KDD2022CLARE
- Contact: Xixi Wu (xxwu1120@gmail.com / 21210240043@m.fudan.edu.cn)