

Hong Cheng¹ Wei Chen² Yun Xiong⁵ Dongsheng Li² \boxtimes xxwu@se.cuhk.edu.hk https://wxxshirley.github.io/

Xixi Wu¹ Yifei Shen² Caihua Shan² Kaitao Song² Siwei Wang² Bohang Zhang³ Jiarui Feng⁴ ¹The Chinese University of Hong Kong ²Microsoft Research Asia ³Peking University ⁴Washington University, Saint Louis ⁵Fudan University

Planning is a fundamental component of **human intelligence**

Graph decision-making problems are often solved by dynamic programming (DP). We investigate the expressive of Transformers to simulate DP.

Theorem 1. (Inductive bias of language hinders expressiveness)

Transformers can simulate DP based on in-context graph input. But language pretrained Transformers with sparse attention cannot.

Theorem 2. (Spurious correlations of auto-regressive loss)

The graph decision-making is a RL problem while next-tokenprediction is imitation learning, which introduces **spurious** correlations.

Theorem 3. (GNNs are dynamic programmers Dudzik & Veličković, 2022)

Can Graph Learning Improve Planning in LLM-based Agents?

