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Task Introduction1 Motivation

Group Recommendation
• Task Definition: based on user-/group-behavioral history, and user-groupaffiliations, suggesting items for a group

···
Interaction Set

Group

Action Comedy

Suitable 
Movies?

Action-Comedy

Suggest

Group

Action Comedy

Aggregation

Group

Action Comedy

Aggregation

Attention Neural Networks

0.999 0.001 Action
Attention score Actual Result

Action-Comedy

Ideal Result

Unfair

Action-Comedy

Group

Action Comedy

Aggregation

···
Interaction Set

Consensus on 
Romantic 

movies

GAP 
: (

Consensus Signal

Action-Comedy

Group

Action Comedy

Aggregation

···
Interaction Set

Consensus on 
Romantic 

movies

Effective member-level 
Aggregation

Member-level View
Hypergraph

Item-level View
GI bipartite graph

Group-level View
Weighted graph

Group
Representation

Adaptive 
Fusion

3/19



Existing Methods1 Motivation

Aggregation-based
• Practice: Applying aggregation strategyacross members’ interests to estimategroup preferences
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Existing Methods1 Motivation

Aggregation-based
• Practice: Applying aggregation strategyacross members’ interests to estimategroup preferences
• Drawbacks:

— Gap between aggregation and actual
consensus
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Existing Methods1 Motivation

Aggregation-based
• Practice: Applying aggregation strategyacross members’ interests to estimategroup preferences
• Drawbacks:

— Gap between aggregation and actualconsensus— Unfair aggregation
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Our ConsRec1 Motivation

ConsRec
• Mine consensus information behindgroup interactions for better capturinginterests
• Alleviate unfair issue on member-levelaggregation
• Combine them to realize betterrecommending results
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Task Definition2 Methodology

Group Recommendation
Sets: U = {u1, u2, ..., uM}, I = {i1, i2, ..., iN}, and G = {g1, g2, ..., gK} denote the setsof users, items, and groups, respectively.
Interactions: There are two types of observed interactions among U , I, and G, namely,group-item interactions Y ∈ RK×N and user-item interactions R ∈ RM×N .
Task: The t-th group gt ∈ G consists of a set of user members
Gt = {u1, u2, ..., us, ..., u|Gt|} where us ∈ U and |Gt| is the size of Gt. Then, given a targetgroup gt, the group recommendation task is defined as recommending items that gt maybe interested in.
Embedding: Maintain three embedding tables U ∈ RM×d, I ∈ RN×d, and G ∈ RK×d.
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ConsRec Overview2 Methodology
• Multi-view Modeling— Member-level: realize better aggregation— Item/Group-level: capture consensus information (i.e., item-side interests and inherentproperties)
• Adaptive Fusion to generate final groups’ representations for prediction
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Member-level View2 Methodology
Construct a hypergraph Gm and employ Hypergraph Neural Networks for aggregation• Hypergraph Construction: each group is modeled as a hyperedge and connect itsmembers’ and interacted items’ nodes• Hypregraph Propagation: fuse item-side, member-side, and inherent features togenerate messages for propagation; stack multiple layers• Result: obtain groups’ member-level aggregation G

m

[G
m
, I,U] = HyperGNN([G,U, I];Gm)
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Item-level View2 Methodology
Construct a group-item bipartite graph Gi and mine groups’ item-side interests
• Via GNN, groups’ representations can obtain interacted items’ features, reflectingconsensus information
• Result: obtain groups’ item-level representation G

i ([Gi
, I

i
] = GNN([G, I];Gi))
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Group-level View2 Methodology

Construct a group weighted graph Gg where similar groups are connected and canreinforce each others’ representations
• Groups carry interent features, connecting similar groups can help propagate suchsignals and capture consensus information
• Result: obtain groups’ group-level representation G

g (Gg
= GNN(G;Gg))
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Summary2 Methodology
Adaptively fuse three views to generate final groups’ representations, together withitems’ representations, for optimization and prediction.
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Experimental Setup3 Experiments

• Datasets

• Baselines:
— Non-Personalized: Popularity— Classical neural network-based: NCF— Attentive aggregation-based: AGREE— Hypergraph-enhanced: HyperGroup, HCR— Self-supervised learning-enhanced: GroupIM, S2-HHGR, and CubeRec

• Evaluation Metrics: HitRatio, NDCG@K
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Overall Performance3 Experiments
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Case Study3 Experiments

Both the group and members like European cities. ConsRec captures this consensus cansuggests Hungary that hits the ground truth.
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Q&A Others4 Thanks

• Paper Title: ConsRec: Learning Consensus Behind Interactions for Group
Recommendation

• Code: https://github.com/FDUDSDE/WWW2023ConsRec
• Contact: Xixi Wu (xxwu1120@gmail.com / 21210240043@m.fudan.edu.cn)
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https://github.com/FDUDSDE/WWW2023ConsRec
https://wxxshirley.github.io/
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